
• _ _i: \ _ t'J _, ! \\. _: , " .S_',._ I U:_I t'l)L , !' ',?,

/ 'I /J '

F

.,.J'

DAVID MCCOMAS

Incorporating Manual
and Autonomous
Code Generatio.n

2 S_PT_U_*,.e Embedded Systems Programming

Code can be ge_,.e_te(I manua!ty or u-_iq,.'i cocle-qene,ations soft-

ware tool:=., buthow ,:1oy_ ir.terp, r_t tl_e two v lhi.:_ .'.rtir.le le,nl:_ at

a design me_hodoiogy chat cou,bincs obje_:h_ri.?._t_d d_:._kln with

autoneme._ code ge_erat[an fol" attitude co_9.r._l fright %ftwa_e.
lo

ecent improvements in space flight computers including

floating-point hardware, ample EF..PROM/P,.,kM, and plen-

ty of CFU power are allowing software engineers to spend

more time engineering the applications software. In m)'

case, the application is the attitude control flight software
for an astronomical satellite called the Microwave

Anisotropy Probe (MAP). The MAP flight eys(em is being designed,

developed, and integrated at NASA's Goddard Space Flight Center. The

MAP controls engineers are using Integrated Systems [nc.'s MATRIXx

for their controls analysis? In addition to providing a graphical analysis
em.ironment, MATRIXx includes an autonomo_ code generation facil-

ity called AutoCode. As the software engineer I was faced with the task of

de_signing .the interface betwccn the manuall)' gcncratcd flight sofiwarc
and the aotono_c__generated C code. This article examines the

forces that shaped _he final design and describes _hree highlights of the

design process:

• D_fining the manual-t_oulonom_s code interface. The design shields

the controls engineers from the flight environment and defines a

robust functional interface that has had little change

* Applying object-oriented dejign to lhe rnanualflight _ode Modeling the

control modes using inheritance provides a simple and robust design

Implementing th_ obj_|.or_nltd de.sign in C. The implementation of the

inheritance hierarchy is not a generic object-oriented implementa-

tion in C, but it proved to bc adequntc for NL'kP's requirements

..'_.-, 03 "98 13:45 -'_15 538 3858 P,_OE.O04

........... 1 Attitude determination uses sensor measurements to update the

onboard estimated attitude which is supplied to the controller

subsystem.

I
MAP attitude control

Figure I shows a simplified high-level

block diagram of M._d_'s flight control

software. Sensors measure spacecraft

position and rates. Attitude determi-
nation uses sensor meazurements to

update the onboard estimated attitude

which is supplied to the controller

subs)_tem. The desired spacecraft atti-

tude is either supplied by mode man-

agement or internally computed by

command generation. Attitude error

computes control errors for the con-
trol law, based on a combination of

sensor measurements, estimated atti-

tude, and commanded attitude. The

control law computes control torques

which are output to the actuators. The

shaded portion identifies the con-

troller subsystem which has been des-

ignated for autocode. (The remainder

of the article will use autocode to refer

to both the tool and the autonomoe_
g?:,XL v

4F,generated code.) z

To understand the object-oriented

design within the context of this arti-

cle, two other features of MAP must be

described: the sensors and actuators,

and the operational modes. ,MAP uses

the following sensors and actuatml for

attitude determination and control:

• Inertial reference units (IRU)--

Measure angular changes in MAP's

position. Spacecraft body rates are
derived from the incremental

angular measurements

• Digital sun sensor (DSS)_Provides
accurate measuremenL_ (<O.O!

degrees) of the sun's position with-

in a 64 degree square field of view
• Coarse sun sensors (C_.SS)_Provide

coarse measureme,_ts (<I0

degrees) of the sun's position. The

CSSes are mounted to provide 4 P/
steradian coverage r _-

• Star tracker (ST)_Provides an esti-

mated attitude derived from star

measurements

• Propulsion control system (PCS)_

Provides external torque to the

spacecraft via hydrazine-fueled
th ruste rs

• Reaction wheel assembly (RWA)--

Provides spacecraft momentum
control via three reaction wheels

MAP uses five operational modes to

achieve its mission goals. Modes are

defined in terms of operational obJec-

tives, spacecraft control objectives,

and performance criteria. Each mode

specifies a set of sensors and actuators

ning pattern. Observing is the only

=node used for collecting science

data

• Deha-V (DV)_Uses IRUs and the

PCS to perform spacecraft maneu-

vers. Delta-V is used for trajectory

management to get to the Sun-

Earth I.,2 point approximately 1.5

million km from the Earth (away

from the sun) and for I.,2 station-

keeping

• Deha-H (DH)_Uses [RUs and the

PC.,S to perform momentum

unloading

..... :

A_tude
Determination

Control
Law

and a control subs)stem configura-

tion. MAP defines the following

modes:

• Sun Acquisition (SA)--Uses IRUs,

CSSes, and the RWA to acquire a

sun-pointing, power, and thermally

safe attitude within 20 minutes

from any initial attitude

• Inertial (IN)_Uses 1RUs, DSS, ST,

and the RWA to acquire and hold a

fixed commanded attitude

• Observing (OB)_U_..s IRUs, DSS,

ST, and the RWA to perform a scan-

Scope the interface
Business, as well as technical forces,

shaped the boundary of the autocode

subsystem. On previous missions, a

high fidelity simulation (HIFI) written

in Fortran was used to develop the

control algorithms which were docu-

mented via a hand-written algorithm

document. Autocode changes this par-

adigm by forcing the HIFI design to

a_imilate enough of the FS_ _ environ-
ment to allow the autocode to be uscd

directly by the FSW. Autocode's scope

dictates how much of the flight envi-

Embedded Systems Programmmg _prE._e_ ,99e 3

_UG 05 '98 t3:46 415 538 3858 PAGE.O05

ronmentneeds to be modeled b)'

HIFI.

MA.P's FSW tasking architecture is

built on an exisling "software bus"

which placed limits un autucode's

scope. The software bus provides stan-

dardized packet-based inlertask com-
munication and insulates applications

from the real-time operating system.

This heritage immediately limited

autocode to an intra-task scope and

LSI's RTOS, pSOSystem, was not even
considered. The flight controller pic-

lured in Figure 1 is suitable for a single

task becat_e all of its components exe-

cute at IHz and have fairly strong data

cohesion.

Additional design decisions further

narrowed the autocode scope (o the

well. MAP is Goddard's first mis.¢inn In

use an autonomous code generator

for its FSW, and prior to MAP,

Ooddard has had minimal experience

with ISl's code generator. Coupled

with _L_P's short development schecl-

ule, this small, well-contained subset

of the FSW is a good way to minimize
the risk factor. In addition, the con-

Iroller subsystem has a high algorithm-

to-logic ratio which maximizes

autocode's benefiu of speeding up the

process of documenting and coding

the algorithms from HIFI and in

reducing errors during the translation

process. However, MAP's return on
investment is limited due to the learn-

ing curve and the small scope of the
autocode relative to the size of the

entire FS'W effort.

Autonomous
code
environment
MAP is using
autocode's basic fea-

tures since we are gen-

erating discrete pro-
cedures without mul-

titasking. The output

of autocode is simply

a collection of C ftmc-

lions. Using

Ihe testing effnrt required to verify a

late algorithm change.
The collection of C functions can

be conceptualized as a single object.

Figure 2 shows a cla._ diagram repre-
sentation of the autocode interface

that must be managed by the manual-

ly coded FSW. Only two autocode

functions need to be called.

Initialize needs to be called once

during system initialization. Execute is

called each control cycle and it man-

ages calling the subordinate autocode

functions. The Input structure is

loaded prior to calling Execute and

the Output structure contains the

results. The contents of Input and

Output are as shown in Table I.

Object-oriented design
A.s I mentioned, control modes specie"

a set of sensors and actuators to bc

used and the control subsystem con-

figuration.Inheritance works particu-

larlywellto abstractcommon attribut-

es and behavior shared among the

control modes. Figure 3 shows the

inheritance diagram used as a model

for the manually coded portion of the

controller. The modes are first classi-

fied according to what actuator is used
for control and each actuator con-

troller is subdivided into specific con-

shaded controller subsystem. It has a

smalland simple set of inp_Jls and nnr-

puts.All I/O can be performed in the

spacecraftbody frame. The controller

subsystem does not directlyinterface

to the following FS_V subs)stems: sen-

sor/actuator hardware, grouttd com-

mand inputs, error message output,

and fauh detection. Therefore. the

HIFI does not need to emulale these

FSW facilities. Attitude determination

shares many of the same alu-ibutes as

the controller subsystem with respect

to being suitable for autocode, but it

was not chosen for aulocode since

could adapt an existing attilude

determination subs)_tem from a previ-

ous mission.

Limiting the scope of autocode to
the ronlroller suh_vstem coincides

with Ooddard's business philosophy as

autocode's template language, I have

rnstnmized autocode to output each

function i_ separate source file with

a corresponding header file. This

helps isolate and identify exactly what

trollers.

The base controller classprovides

three functions: Neu, Delete, and

NonttorPerformnce. The italicized

functions are virtual functions and

Notalion:

code has changed as a rest,lt of an

algorithm change. This strategy may

he ttsefid after our scheduled develop-.

ment period when we need to _-_ess

descendants provide the implementa-
tion. Neu and DeLete are used to

instant_ate and destroy controllers.

respectivel}. MonitorPerformance is

4 SffnE_s[R '°,PgeEmbedded Systems Programming

--,L_,_303 " 98 .L3:48 4.tS 538 39S8 P_GE. 00_

*l

RWA Torque Cmds

Constructor
Dest_ctor

.... CompleteTorque

Delete
MonitnrPerfnrmance
CompltetTorque
UpdateState
IsModeComplete

PCSThrust_rCmds
BumDuration

ConstnJctcx
Destructor
CornpleteTorque

•. Virtual FunctionTable TargetMomentum
Virtud FunctionTable

Constructor Constructor
Destructor Destructor
lsModeComplete IsModeComldete
UpdateState : UpdateState

similar to a protected function in C++

and is used by descendant classe., to

monitor body rates, body rate errors,
and attitude errors. Notice that

ComputeTorque is implemented by
the RWA and PC3 controllers and not

the five control modes. Compute-

Torque calls autocode's Execute func-

tion. passing mode-specific control

fla.Cs chat are de_ned when a mode is

constructed. Finall); Isl_deComptete

and UpclateState are implemented by

each controller because they address

state information that is unique to
each controller.

Since the base Controller class

defines a common interface for all of

the controller_, the code that manages

the controllers is identical regardless

of which conlroller is execuling. This

proved Wry useful during unit testing
since the test driver is identical to the

FSW that manages the controllers.

The Input and Output data structures

used by the autocode are managed by
both the Controller cla._ and tim RWA

and PCS controller classes. Although

management o(" the aurocode inter-

face is not encapsulated within a single

cla_, it ha._ proven to be a robust

implementation, re_iliem to ripple

e_ects due to changes in the autocode

interlace, lnheriumce has also kept

the functions relatively small and sim-

ple so they have been e,'_y to under-
stand and t_t.

Implementation
I did not take a general approach

tow'ard implementing object-orienled

concepts in C. Virhml fimctinn tahle._

were manually created and no dynam-

ic memory allocation is used. Listing]

show_ the rJ,_ntiai data IT,pc defini-

tions for the abstract controller class.

The ATTCTL_RWA and

ATTCTL_PCS structures are used by
the RWA and PCS controllers and

access control is managed by the pro-

grammer. In C++ lhese data structures

would be defined as part of the RWA

and PCS classes and the compiler
would enforce data access control.

The New function loads the

ATTCTL_VTBL structure. A pointer
to a controller's virtual function table

is supplied as a parameter to Neu. This

implementation relies on the fact thai

multiple controllers cannot exisl

simuhaneousl).

Embedded Systems Programmmg SE_[MS_ ,_,sa 5

AUG 03 '98 L3:50 his 538 3858 #AGE 007

/* Virtml Function Table */

tyl)edefvoid (,AI"r_'I"I,._OR) (vold *);

_f void (_I,_¢_F_.TORQI.qE) {void);

t,loedef void (*ATTCTI,.PF.3TRLRTOR) (void);

t,/pe_JefBoolean (*ArI%'Tt,.j_OF,_CCI4F"._rTE)(vold);

t_f st_ct (

ATrCII,_C_OR Constructor;

A_CTI,__ F._T_ _teTo_;

AI"rCTL_.DESTRUCTOR I_structor;

A_ _ 4,1S_ F__COf4=I.ETE %=#JxJ_l_e;

ATT_ATF._'rAI_ Ul:x_atesta te;

) ATTCT_vr_;

I* IliA rode Strut.tur_: Only _-tntr_jful during _ =ode= */

t-ypedef .struct {

ft=t Torc_-[_U!_v_F._US_;
} ATTOT_._QA;

/* PCS mode structure: 0nly meaningful, during _ modes *1

t)lm_def struct (

unstmned16count=rm. THmmTE_SJ;

) ATT_;

/*-=t*Abstract cont_l[er class _rlrdr*/

tM:edef st_t (

, • •

A_L'I3,Ji_A It_m;

Al"r_ Pcs;

A_I/IIBL Function;

) ATTCT_CLASS;

. • , ..,.:..

-_otd .-At t CtL.Cx=aJt elrdrque (vo_ d)

H load INR.Ir strtLcture 7,dt h RF.a._red-B0dy_te, M_eet speed, sun Ang(e

// Load ZNPJI" str,Jc_ure wltb est]mmt¢_ and ¢_mmmncledattitude

It .Cat I: Auto_de.Execute(%NPJT,OUT1=UT)

<:*AttCtl..Funct_on.Coq:xJteTorque)O; // _[l RI_A_ vtrtul[OOmlxJteTorque

f_nct+on

II Load AttCtl.$ys_m_ag using OUTI_dT dllta

) I* End AttCtl.__eT_() */

void AttCtl_eTonQue(_id) {

// _ A1:tCtl.Rt_ =;tr_umtureumi_ _ur¢_'$.

) /* End Attttl.lq_mO0ml_JteTo_() */

Listing 2 shows ComputeTorque's

implementation. At t Ct I._Comput e-

Torclue loads the dyt_amic portions of

the autocode Input data. The portions

of Ihe InDut structure that are static

during a controller's lifetime are

loaded when a controller is construct-

ed. AttCtl...ComputeTorque invokes the

6 s_p_uBt_ _0_8 Embedded Systems Programming

aulocode followed by a call to the

RWA or PCS ComputeTorque virtual

function. The R_/A or PCS fu=zction

processes the mode-dependent por-

lion of Output as _hown in

AttCtl._R_aComputeTorque. Finally. the

mode independent portion o_ Output

is processed by AttCtl's ComputeTorque.

Some downsides exist to using the

autocode in this fashion. The Input

structure to autocode includes mode

control flags which summarize infor-

mation that is already captured by the

class inheritance structure. Autocode

contains logic to execute difTerent

forms of the controller based on the

input mode control flags. If the

entire system were designed as a

whole, the conditional blocks of the

autocode controller would exist as

functions within the individual con-

troller classes.

Another drawback to AutoCode is

that it can be inef_cient with respect

to both memory and speed. Autocode

works on each graphical element as it

produces code. Many blocks are traits-

lated into functions with large para-

meter lists. Functions are good for

traceability from code to design but

may be bad for code optimization.

There is an inline procedural block

feature that allows block, to be gener-

ated inline with the current block's

code. This helps, but lumping code

into a single function is not alway_

desirable. For MAP. we are generating

each *superblock" as a separate func-

tion contained in a separate file. This

allows algorithmic changes to be con-

figuration managed at the source file

level. The additional function over-

head is acceptable since we aren't

close to our CPU or memory budgets.

MAP is al_o taking a conservative

approach with respect to testing the

atttocode. To maximize savings imt test

time. autocode would be treated as a

black box during FSW unit testing.

The analyst would test the algorithms

in HIFI and the autocode would be

pa_ed to the build/acceptance test

team after being integrated with the

rest of the FSW. M._P haz altered this

._,__,5 03 'gB _3:53 415 538 385B P_OE.OOB

06

Further M APireading !i:iil;j;,!:.:!! :: ';!r: i. .:,i ,i, : il _.,, :>:i. l
MAP's mission.is to probe condiUogSIn:th¢'_a,!_ unK'eg;e_ measuring the pcopeitles t

i of lhecosmlc: micr_vav,e background.;r_l_at!'.on Or.eLthe foil:sky: These measurem.efi_ :' ._
' .'wtll'fielp deter_lln_:the valves of BigBan.i['cOsmo_ogt;c_!._.ramet ¢_ az3c_determin¢.ho.w_l

t wtioms. For more'_m_aUon see the._e_ber .;_.99_zssueof £)_._over magazine.or .:

. .. p. •, , •.., ,wsdI_le,MA Web._e at.rnap._sf_t(a_.gq¥_ ..,': ,i ' .. ":.'

direct approach. For early builds,

autocode is being unit tested as a black

box nn a PC using test data captured

from HIFI without full path (white

box) testing. For the final build, fuil

path unit testing un the flight hard-

ware will be performed. This

approach allows us to take advantage

of the quick design-to-test time for

early builds when algorithmic changes

are most likely to happen. However, it

is based on the assumption that the

full path unit testing will not uncover

substantial coding problems late i.

the project schedule.

Lowering the barrier
A_c'_ode has forced us to formally

define our controller subsystem inter-

face because it's a separate ph)_ical

and logical entity. We may not be

exploiting all of the features of

autocode but limiting the scope has

served us well in terms of meeting

_hedule and mitigating risks.

Autocode has affected our traditional

way of doing business. On previous

missions, the _oftware engineers have

worked fairly independently of the

controls anal)_ts,using an algorithms

document as a formal communica-

tions mechanism. Autocode has suc-

cessfully lowered the mthural barrier.

bringing the software engineers into

the controls analysis environment, and

the controls engineers have become

more cognizant of the flight software

environmenL This ._'mbiotic relation-

ship helps scheduling since the depen-

dency flow is no longer unidirectional

from the analysts to the software devel-

opers.

I consider this project to be transi-

tional with regard to how future pro.

jects may be developed. Advances in

flight software architectures, coupled
with advancements in nnboard com-

puting resources, should allow for

objecbbased software construction.

Standardized object communications

mechanism such as COKSA may be a

viable option for flight controllers as

they mature. The Distributed Object

Computing group at Washington

University is a good example of the

work being done in this area?

Once a business establishes an

object communications layer, reusable

object libraries can be developed.

Reusable objects may be archived in a

format that is usable with respect to a

developer. For example, a reusable
controller written in C does not have

much value to analysts that work in a

graphical environment. The analysts

would prefer to have a reusable con-

troller in a form that can be easily

manipulated within their develop-
ment environment. Autonomous code

generation tools would allow reusable
libraries to exist in different formats.

as long as the tools pruduce objects

that conlbrm to an object communica-

tions standard. Regardless of what the

future may hold, the design of high

qualin., imerfaces will be a critical fac-

tor in successfully develnping and

using object libraries. MAP's design is

first step towards achieving this goal,

David A.frComa's bio wiU g_ right I_ere,

References

I Imt_f..hHen '_y_,len_ www _f._ ¢C,m

html

RESOURCES
Executablecodere(atedtothis articleIsavailableat
www.embedded, com,

Embedded Systems Programming s_[_aea _see 7

i d/B

